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Abstract 

The crystallographic symmetry operations in four 
dimensions that have orders 5, 8, 10 and 12 can be 
formulated as double rotations of these orders instead 
of in the ways that have been used previously. The 
crystallographic character of the operations is com- 
patible with the non-crystallographic orders of their 
constituent crypto-rotation planes because these lie 
in crystallographically irrational orientations. The 
orientations of these planes are derived in terms of 
the usual crystallographic axes and are illustrated by 
means of hyperstereograms. The analysis is used to 
throw further light on the nature, on the enan- 
tiomorphy, and on the degrees of freedom of the 
symmetry operations, but the irrational orientations 
lead to substantial disadvantages in such a formula- 
tion of the symmetry operations for both the graphical 
and the symbolic representations of the four- 
dimensional crystal classes. 

1. Introduction 

Every n-dimensional crystallographic point-group 
operation can be expressed on a suitable basis in 
terms of a unimodular square matrix of the form 

1 0 0 0 

o T o o 

0 0 
N1 

0 0 

0 0 0 0 

0 0 0 0 

/00 o 0 0 
0 0 0 

0 0 0 0 . . 1  

0 0 0 0. 

0 0 0 0. 

0 0 0 0. 

0 0. 
N2 

0 0. 

0 0 .. 
0 0 N 3 . .  / 

provided that either the first row and column or the 
second row and column be omitted if n" is odd, and 
both may be omitted if n is even. N+ is of the form 

°os0 sin0) 
sin O~ cos O+ " 

It may reduce to non-zero diagonal terms (±1) only 
if 0 = 0 or ~r. This was already implicit in the work 
of Hermann (1949), but it has been made explicit by 
Weigel, Veysseyre, Phan, Effantin & BiUiet (1984) 
that it has the consequence that four-dimensional 
crystallographic symmetry operations can all be 
expressed by at most two rotations about absolutely 
perpendicular planes. Of the fourteen of these 
operations that leave only a point invariant it has 
been traditional to describe ten as double rotations, 
though one of us has introduced an alternative 
nomenclature (Whittaker, 1984a), these ten, with the 
corresponding alternative notation, are 

22 32 42 62 33 66 44 63 43 64 

i 6 4 3 III III IV VI XII XII.  

Of the remaining four, two have been traditionally 
described as multiple 'rotations: A.AA. and 3344, 
renamed VIII and XII'. The other two, of order 5 and 
10, have not hitherto been regarded as factorizable 
in this way and were thus the first candidates for the 
Roman numeral notation V and "~', the latter having 
also been described in the past as X. However, 
Veysseyre, Phan & Weigel (1985) have now intro- 
duced the nomenclature 55, 88, 10,10 and 12,12 for 
these operations of order 5, 8, 10 and 12 respectively. 

Standard forms of the matrices that have been used 
hitherto (Brown, Billow, Neubilser, Wondratschek 
and Zassenhaus, 1978; Whittaker, 1985) for the V, V, 
VIII and XII' operations are given in (1), (3), (4) and 
(6) below. It is clear from the mathematics that there 
must exist transformations of axes that convert the 
more usual forms of the matrices of these operations 

into the form ( N1 0 ) , w h e r e  N1, N2 are 2 x 2  
N2 

matrices for a 2~rq/p rotation in a plane, where p is 
the order of the operation and q is not a factor of p 
and may be different for N~ and N2. However, this 
poses a conceptual problem, since a vector lying on 
either of these planes will be repeated only by the 
p-fold non-crystallographic rotation symmetry in its 
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own plane. We have therefore investigated the 
orientation of these p-fold planes and their relation- 
ship to the graphical representations of the symmetry 
elements. This is considerably clarified by use of the 
hyperstereogram (Whittaker, 1973, 1985). Some addi- 
tional clarification of the degrees of freedom of the 
symmetry elements (Whittaker, 1985) has also 
emerged as a result of this work. 

2. Equations of the crypto-rotation planes 

In general, two successive applications of a symmetry 
operation to a vector will lead to two images that are 
not coplanar with the original vector. 

However, let r be a vector and M a matrix such 
that r, M(r) and M2(r) all lie in a plane with equal 
angles 0 between r and M(r) and between M(r) and 
MZ(r). Let n be a vector perpendicular to r in the 
same plane. 

Then since M2(r) = Ar+/zM(r)  for some A,/z, 

Me(r). r = Ar. r +/xM(r) .  r 

and 

M2(r). n = A r . n +  t tM(r) ,  n. 

Thus, cos 20 = A +/~ cos 0 and sin 20 - / z  sin 0, 
which give/z = 2 cos 0, A = -1 .  

Hence, 

( M 2 - 2  cos 0 M + l ) r  =0,  

which defines the plane in which M has the effect of 
a rotation through the angle 0. 

The appropriate values of 0 are given by the 
equation 

I M 2 -  2 cos OM + II -- 0. 

The V operation 

If we take as the standard orientation of the V 
operation that whose matrix referred to the axes of 
the decagonal or icosagonal systems (Whittaker, 1985, 
p. 81) is 

(i 1 0 i) 0 1 0 ,  
0 0 (1) 

0 0 

then the above analysis leads to a unique pair of 
planes whose equations, in terms of these axes, are 

//x: y = ~o(x - w), ~z = y - w 

with 0 = 72 ° about/12, and 

H2: ~oy=w-x,  z=~o(w-y )  

with 0 = 144 ° about / /~ ,  where ~ = (1 +5~/2)/2. This 
particular V operation is therefore equivalent to that 
given by a matrix, referred to any orthogonal axes 

WoXo in //1 and any orthogonal axes yozo in /12, of 
the form (cos7 o sin7 ° 0 00 t 

sin72 ° cos 72 ° 0 

o o 
0 cos 144 ° -s in  144 ° " 

0 sin 144 ° cos 144 °] 

(2) 

A four-dimensional crystal possessing this V sym- 
metry operation thus has fivefold rotational symmetry 
on each of these two absolutely perpendicular planes. 
However, the planes concerned are not rational 
crystallographic planes. H1 is spanned by vectors 
[1, ~o, 1, 0] and [0, 1, ~o, 1], and/I2  is spanned by vec- 
tors [1, 1, 0, ¢] and [¢, 0, 1, 1]. There is therefore no 
translational repetition on these planes, and so there 
is no reason why the pattern formed by some con- 
'tinuously varying scalar property of the crystal (e.g. 
corresponding to electron density in a three- 
dimensional crystal) should not have fivefold rota- 
tional symmetry on them. This conclusion is, how- 
ever, somewhat startling to a crystallographer. 

It is to be noted, however, that the whole discussion 
is in terms of point groups, and does not necessarily 
imply that every section of a structure parallel to I/1 
and//2 would have fivefold rotational symmetry. This 
symmetry would only be expected for sections that 
contain a point with site symmetry V, and such points 
may not occur in every space group of these crystal 
classes. We are indebted to one of the referees for 
pointing this out. 

The ¢¢ operation 

The matrix of a "v" operation in the same orientation 
as the V operation represented by (1) is 

(i 0 0i) 0 0 " (3 )  

0 0 

Since ~ = V .  ] and ~ is equivalent to a double 
twofold rotation on any pair of absolutely perpen- 
dicular planes, these twofold crypto-rotation planes 
may be combined with the fivefold crypto-rotation 
planes to give tenfold crypto-rotation planes in the 
same orientation. No new principles arise. 

The VIII operation 

If we take the matrix 

O01 000 (4) 

as a standard form of the VHI operation referred 
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either to the axes of the octagonal system (Whittaker, 
1985, p. 81) or to orthogonal axes, then the procedure 
described above leads to a unique pair of planes 
containing vectors that are repeated with eightfold 
symmetry within each plane. Their equations are 

/ /1  ." W -- X + y21/2  = 0, W + X -- Z21/2 = 0 

with 0 = 45 ° about//2,  and 

/ /2 :  W -- X -- y21/2 = O, W + X + z21/2 = 0 

with 0 = 135 ° about H1.111 is spanned by [0, 21/2, 1, 1] 
and [21/2,0,1,1], and HE by [0,21/2, T, 1] and 
[21/2, 0, 1, 1], SO that again they are irrational planes. 
They are therefore not constrained by translational 
repetition, and may exhibit eightfold rotational sym- 
metry analogous to the fivefold symmetry discussed 
above. The matrix with respect to any orthogonal 
axes WoXo lying in//1 and YoZo in/-/2 is 

1/21'2 --1/21'2 0 00 2/ 
1/21/2 1/21/2 0 

0 0 --1/21/2 --1/21/ " 
0 1/21/2  - - 1 / 2 1 / 2 /  

(5) 

A notation for the irrational orientations of the eight- 
fold crypto-rotation planes in the hypercubic system 
has been given previously by Veysseyre, Weigel, Phan 
& Effantin (1984). 

The XlI' operation 

The particular orientation of the XlI' operation 
represented by 

(i o i) Oo oO (6) 

with respect to the axes of the dodecagonal system 
(Whittaker, 1985, p. 81") can be shown in the same 
way to be equivalent to a unique pair of crypto- 
rotation planes with equations 

//1: w - 2 y  = X3 U2, 2Z--X = W31/2 

with 0 = 30 ° about HE, and 

//2: 2y -- W = X31/2, X-- 2Z = w31/2 

with 0= 150 ° about //1. Again, these planes are 
spanned by irrational vectors, [2,0, 1,31/2 ] and 
[0,  2, --31/2, 1] for //1 and [2, 0, 1, -31/2] and 
[0,  2, 31/2, 1] for//2, so that similar conclusions hold 
good. 

* In the reference given, the angle xy, given as y, should be 
180 ° -  y. 

3. Graphical representation of the V and ~' operations 

One of us has discussed previously (Whittaker, 1984a, 
1985) an extension of the concept of 'symmetry ele- 
ment' that is convenient in the present work. In the 
strict sense a symmetry element is the locus of points 
that are invariant under the action of a symmetry 
operation, and for any double rotation in four 
dimensions this is merely a point. In an extended 
sense, however, we describe as the symmetry element 
the whole complex of ideas that associates this point, 
the order of the operation, the geometrical 
specification of directional parameters associated 
with it, and its representation by a suitable graphical 
symbol in a hyperstereogram. Such representations 
for double rotations have been by means of their 
constituent crypto-rotation planes if these were 
uniquely defined, and the above discussion shows 
that this would now be possible for the V, V, VIII 
and XII' operations. Up to now their symmetry ele- 
ments have been represented by a small-scale hyper- 
stereographic diagram below the main hyper- 
stereogram showing the effect of the operation on the 
crystallographic axes. Both representations are used 
in Figs. 1-10, which illustrate the relations between 
them and the rather complementary information that 
they convey. 

In Fig. 1 the positions of//1 and//2 a r e  shown for 
the V operations corresponding to matrix (1) above 
related to the axes of the icosagonal system (system 
31). In Fig. l(a) a point labelled A has been taken 
close to the chain line representing the plane H1; 
application of the operation to point A leads to point 
B, and this involves a rotation of 4~r/5 about the line 
combined with a movement of 2¢r/5 along it, i.e. 
about the plane HE represented by the other chain 
line. Repeated application takes B to C and then to 
the negative points D and E in the expected way. In 
Fig. l(b) the point A has been taken close to the 
chain line representing//2, and one application of 
the operation therefore takes it to B by a rotation of 
2zr/5 about it and 4~r/5 along it, and further applica- 
tions lead to C, D and E. However, the distinction 
would be much less obvious if the points were not 
labelled. The successive points along the //2 chain 
line, A D B E C  in Fig. l(b), differ only from those 
along the//1 chain line A B C D E  in Fig. l(a) by the 
sense of their rotation about the chain line to which 
they are dose; in (a) they follow a left-handed helix 
and in (b) a right-handed helix. 

In Fig. 1(c) the points have been taken on 111 so 
that they represent five coplanar vectors with the 
anomalous pentagonal symmetry on a crystal- 
lographically irrational plane. 

In the hyperstereograms of Fig. 1 it is to be noted 
that the chain line representing the positive half 
of each crypto-rotation plane intersects (in three 
dimensions) the broken line representing the negative 



390 REPRESENTATION OF THE FOUR-DIMENSIONAL CRYSTAL CLASSES. IV 

/ / \ \ 

/ r- / ~ M \ 
. . " . .  I / "~ 

I I~ -. , Lu/  I,,., ; \ \ "k@ ' "+:  
/ . __ K I 

. - - \ 7  ,~ ~ - t - / .  \ 
l" " --.. 1 
I, >-o ,, ,,I . "1"/ " t 
. _,/'<,,,,, \ \ ~  ~ i~.,,. _ , /  
\ ~ I ! 

I ~ . / " ~  - -  -I" / 

t , I /  I ~o "~" / 
\ <+', . A  / 

%.-- 

/ r - . .  / ~ x  / o  x \ 

x , , .u/ m I 

/ \ t - ~  I ÷ i  \ " ~ 

k >'o " \  / I  N .(, 
"', ;",i " 1 /2"  "t, 
\ ~ ~ ,..9"\ / ' '  ', /..' 
\ / - - , - . × ~  - ~ - / 

\ I ' . /  / ~ - ~ i  / ,, 

, , ' < 4 4  , 
\ . L  ~" , / i N " ~  %--- / " ~  

4"< , ~x~, I ", 
/ r - , .  / " 

/ b " - .  , "  \ " . / .  / 
/ \ . . . .  ,~ . i \ 

.... ~ \  i /  ~ -  - . h . .  
~.. " "\ / -- 7 "  -- .  
I / @ . ~ 1 
, % =, , ,  , I .  ,,, I'~ 
~,, ÷ / , i  " . / , ,  "t 
\ \ , ",,, .t ~,,  /7 

x # I ' \  / , 0  @~ 

X I I / / " I 
\ , • ~ o "  " / , ,.~ ! / 

I • 
~ W.. /- ~ 

.~ / 

K , <  / \ "~  
/ I ~ x  ,.o~ X 

. " - .  / ] 

I \. r / . .  I i \ 

~' % , 'n ' \  / I  N ~i',.( " ~ ,,i 

\ ~ , > I ~ ,  /,. 

\ I ,~/~--t-- ~ / 
I I " "~  I 

X , . I  I ~ ' ~  I / A 

ii 
~ i "*~ 

v 

\ X / 
I 

/ 

"t 

/ 

..-4 

/ 

X 1 / 
\ \ / ~ = /  

" "  \T / j ~  / 

\ 

/ I 

/ I 
/ I 

/ . - - -  F -  

x 
\ 

X 

\ \ ,  

?/-; 

/ 

' . ~ %  \ 
/ / ~ - -  I 

"""L , ' 1  i \ 
\ ," \ 

I . _ ,~ I 

l" \ ~  ,'1 , "@],(' ~ I 

~ "ix /1 ~, 
\ "" , , ' - .  - i - 

k I I. I "  I ~ ' - . . I  I A \ , ,,~ / o / / / - q  
~ . ~ "  ~ 1.. i 

/ /rs"~ % ~..  

/ ~  I ~ x  • -. / 0 \  "~ 

"- / I 

--\--F ~ L 

° . . t  
"" " N  -'I,j "- 1 

r- +S.I" v ", 

\ l I . "  ~ - .  . , 
\ , . . "  ' % ~ . I  " / ' 1  

%...- / , - ' ~  

v 

¢~,.~ 

C.:a g .~  
o ~ c~c, 

~ - 8 ~  

.'9 ~ " B ~  
B o ~ ' g  

o,} 

oo ~ , ~  
" ~  ~ ~ ,_  
• -~T.~ ~ ' -  

• : .,~ ~ .-~ 

=~ ~.~ ~..~ 
i .-, 0 ~ ..~ I~ 
I , , -~ " - ' - ~  l -  ~ o : . -  ~ 

i=~ 0 ",'-~ ~ 

I.,. ~ " "  
a , ~  ~ ~ O 
! ~ I~, "-' ""-~ 

~ o ~ o  E 
~ ~ o  
~:-3" o o - 
o I~ .~  ~I ~ 

.~ ~ .~ o = 

~ O " ~  

.,.., 

~ o ~ o  
['" b0  v)  ,,~i- 

• ~ i.,, 
,.-, o i~ ~ 
~ . , - ,  ~ .w., 

b: 



E. J. W. WHITTAKER AND R. M. WHITTAKER 391 

half of the absolutely perpendicular plane projected 
to the north pole. The existence of this intersection 
arises from the fact that each of the planes/ /1 and 
//2 makes an angle of 45 ° with the z axis. The straight 
line joining these two intersections passes through z 
and represents the plane containing [1100] and 
[1101]. In the hyperstereogram it is the join of the 
mid-points of two oppositeed_ges of the tetrahedron 
with vertices at w, x, y and [1111] shown in Fig_l(d),  
and this join is one of the (three-dimensional) 4 axes 
of this tetrahedron. The tetrahedral symbol of the V 
operation shown at the lower left of the hyper- 
stereograms is based on a copy of this tetrahedron 
on a smaller scale (and including the point represent- 
ing the z axis at its centre) in which the joins indicate 
the effects in sequence that the operation has on the 
axes; in the symbol the join of [1100] and [1101] is 
uniquely defined as joining the mid-point between 
two vertices that are both joined to z and the mid- 
point between two vertices that are neither joined to 
z. This definition is independent of the convention as 
to which power of the operation is directly represen- 
ted by the symbol, and it is invariant for all its powers. 

The four-dimensional equivalent of the above state- 
ment is that the hyperplanes zH1 and z/-/2 intersect 
in the plane z[ l l00] .  

Fig. 1 is constructed with the axes w, x, y, z of the 
icosagonal system (Whittaker, 1985, p. 81) in which 
all the inter-axial angles are equal to cos -1 (-¼). In 
the more general case of the decagonal system the 
six interaxial angles fall into two groups of three; 
if the pentatope operation converts z ~ y--> x ~ w 
[1111] then these are 

and 

such that 

w ^ x - x ^ y - y ^ z =  0 

w^y =- x^z =- z^w = ~o 

cos 0+cos  q~ = - 0 . 5 .  

Fig. 2(a) has been constructed for 0 = 90 °, ~0 = 120 °, 
and it may be seen that the representation of / /1  is 
then less than 45 ° from z, while that o f / I2  is corre- 
spondingly more than 45 ° from z; and they do not 
intersect. In Fig. 2(b) 0 =74.57 °, ~o = 140 °, and the 
representation of / /1  is quite close to the polar axis 
of the hyperstereogram while that of / /2 is quite close 
to the equator. 

The limit of this change of 0 and ~o would be when 
0 = 72 °, ~0 = 144 °. In this limit//1 would coincide with 
the yz plane and would also contain the w and x 
axes. Thus the four-dimensional space would have 
degenerated into two dimensions. The opposite limit 
would of course be with 0 = 144 °, ~0 = 72°; in this case 
//2 would contain all four axes. The ease with 0 = ~o = 
cos -1 (-~) is half way between the two limits. 

It is to be noted that the intersection of the hyper- 
planes z//1 and zFl2 in the plane z[ l l00]  is indepen- 
dent of the values of 0 and ~o. In the limit where the 
four dimensions degenerate to two this plane 
degenerates to the z axis. 

Fig. 3 shows a hyperstereogram of a ~' operation 
and its crypto-rotation planes of c~rder 10. It is iden~ 
tical with Fig. l (a )  except for the addition of a 1 
operation which leads to the duplication of each point 
(w, x, y, z) by its opposite (~, x, y, g). No new features 
arise. 

4. Graphical representation of the VIII operation 

The phenomena that arise in this case are very similar 
to those in § 3, with one exception. The operation is 
again possible in two crystal systems: the octagonal 
here is oriented* so that 

W^X= y^z=90 ° 

and 

x^y = x^z = z^w = 180 ° -  w^y; 

and the hypercubic is oriented with all axes 
orthogonal. Again, the axes of the higher-symmetry 
system correspond to a position half way through the 
permissible range of variation in the lower-symmetry 
system. This ranges from a lower limit of w^y = 45 ° 
to an upper limit of w^y = 135 °, and at both limits 
the four-dimensional arrangement degenerates to a 
two-dimensional one. 

Figs. 4(a), (b) and (c) show the situation when the 
axes are orthogonal and the points are close to / /1 ,  
close to/ /2  and on Ha, respectively. Successive appli- 
cations of the operation lead to the sequence of points 
ABCDEFGH which follow a left-handed helix round 
Ha in (a), with a 135 ° turn per application. In (b) 
successive applications give ABCDEFGH with a 45 ° 
turn along a left-handed helix of three times the pitch, 
but consecutive points ADGBEHCF follow a helix 
round H2 identical to that followed by consecutive 
points round Ha in (a). Thus the overall effect of both 
erypto-rotation planes is identical. 

Figs. 5(a) and (b) show the effect of changing the 
interaxial angles; in (a) the non-orthogonal angles 
are 70 ° (three angles) and 110 ° (w^y), and in (b) they 
are 50 ° (three angles) and 130 ° (w^y). The latter 
clearly shows the approach to the limit when all the 
axes would be eoplanar and lie on Ha, the polar axis 
of the hyperstereogram. 

As in the ease of the V operation, the hyperplanes 
zHl and zH2 intersect in the plane z[ l l00] ,  and at 
the middle of the permitted range of interaxial angles 
(which here corresponds to all axes orthogonal) the 
planes//1 and I/2 are both at 45 ° to z. 

* This orientation is obtained from that illustrated on p. 148 of 
Whittaker (1985) by converting x to y and y to x. 
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The fact that the points in the hyperstereograms 
follow helices of the same hand round/ /1  and //2 
corresponds to the fact that the VIII operation is 
enantiomorphic, whereas the V operation is not enan- 
tiomorphic and helices of both hands are present in 
its hyperstereogram. Fig. 6 corresponds to Fig. 4(b) 
but in the enantiomorphic form. 

5. Graphical representation of the XII' operation 

This operation is described in terms of the axes of 
the dodecagonal system which require 

w^x  = y ^ z  = 90 °, w^y  = x ^ z  = 120 ° 

and two angles left undefined, but related by* 

w^z  = 180°- x^y. 

The permitted range of these two angles is from 30 
to 150 ° and at both limits the four axes become 
coplanar. No higher symmetry is attained at the centre 
of the range where w"z  = x " y  = 90 °, but the com- 
ponent IV and III operations then have their symbols 
at fight angles. This situation is shown in Fig. 7. Points 
close to the planes//1 and/ /2  form similar arrays on 
screws of the same hand in the same way as in Fig. 
4, although again different sequences of points are 
produced by successive applications of the symmetry 
operation. The effect of changing x ^ y  from 90 to 65 
and to 40 ° is shown in Fig. 8. In the limiting condition 
the symbols of the component IV and III operations 
would be parallel to one another. The enantiomorph 
of Fig. 7(a) is shown in Fig. 9, and the points follow 
a right-handed helix. 

The hyperplanes zH1 and z//2 intersect in the plane 
z[2010], which is represented in the hyperstereogram 
by the diameter of the equator perpendicular to the 
plane containing the x, y and z points. 

It would also be satisfied if the angle at lower fight 
were 216 ° , but since 

sCOS 72 ° - s in  72 ° 

in0072° COSo0 72° 

cos 144 ° 

this is equivalent 
two planes. 

0° 00/  
cos216 ° -sin216°~ 

/ 

sin 216 ° cos 216°/ 

-s in144° 0 O0 o / 
cos 144 ° 0 

0 cos 72 ° - s in  72 

0 sin 72 ° cos 72°] 

to interchanging the angles on the 

The process of derivation of the planes//1 and/ /2  
from the operation V in § 2 unequivocally assigned 
the 72 ° angle to one plane and the 144 ° to the other. 
However, there must exist another V operation (Vint) 
that has the same pair of crypto-rotation planes but 
with the rotation angles interchanged. Fig. 10 shows 
the effect of this Vi,t operation with the points near 
//1 in its alternative position, i.e. the position o f / /2  
in Fig. l(a) .  The graphical symbol of the Vin t 
operation shows the totally different orientation of 
the effect that the operation has on the z axis. 

The product of V and Vin t is an explicit fivefold 
rotation plane. These two operations cannot coexist 
in any crystal class, as is evident from the fact that 
the orientation of Vint is irrational with respect to the 
crystallographic axes appropriate to V. 

In the formulation of V as a 10,10 double rotation 
the same problem arises. The two angles are 36 and 
108 ° and must be a sl~ecific way round for a particular 
~' operation. Since V contains an explicit V among 
its powers exactly the same considerations arise. 

In the formulation of VIII and XlI' as double 
rotations the problem does not arise, because in both 
of them interchange of rotation angle merely leads 
to a power of the same operation. 

6. Interchange of crypto-rotation planes 

In the formulation of a V operation as a 55 double 
rotation the trace of the matrix must be -1.  This is 
satisfied if the rotation angle in the upper-left quad- 
rant of the matrix is 72 ° and that in the lower-right 
quadrant is 144 °, since 

cos 72 ° = ( 5 1 / 2 - 1 ) / 4  and cos 144 °= ( - - 5 1 / 2 - 1 ) / 4 ,  

so that 

trace (M) = 2 cos 72°+2 cos 144 °= -1.  

* This relationship is incorrectly given as w"z = x"y on pp. 81 
and 151 of Whittaker (1985). 

7. Degrees of freedom of the operations 

It has previously been deduced from the characteris- 
tics of the geometrical symbols required to specify 
the V, ~', VIII and Xll'  operations that they have four 
degrees of orientational freedom (Whittaker, 1985). 
This is confirmed by the present analysis, since a 
plane (H1) has these degrees of freedom. However, 
in terms of both analyses, one of these degrees of 
freedom seems at first sight to be different from the 
others in that it depends on the value of a variable 
interaxial angle or set of interaxial angles. This 
apparently peculiar feature arises because we have 
adopted the convention of always placing the z point 
at the centre of the hyperstereogram. The matter may 
be clarified by comparing the situation depicted in 
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Figs. 1 and 2 with comparable situations in lower 
dimensions. 

The V operation in four dimensions belongs to a 
series in spaces of increasing dimensionality, as 
shown by the following sequence of matrices 

_  OlO 
, l O  ' i o o  

1 0 i 0 0 

i 1 0 0 0 

o ]. 0 1 0 

0 0 1 O ,  

~ 0 0 0 10 
0 0 0 

In two dimensions we have a threefold rotation, in 
three dimensions a 4 rotation inversion, and in four 
dimensions a V operation which is a 55 double rota- 
tion. In general, in n dimensions we have 

n = 2m: m crypto-rotations on absolutely perpen- 
dicular planes through angles 2 ~ k / ( n + l ) ,  with 
k = l ,  . . . .  ,m ;  

n = 2m + 1" m crypto-rotations as above combined 
with a crypto-mirror perpendicular to a direction 
orthogonal to all of them. 

When the number of dimensions is four or less we 
can bring out the relationships by geometric illustra- 

!tions. The next two members of the sequence (in five 
and six dimensions) will have crypto-operations 
which may be indicated by the symbols 63m and 777 
(by analogy with 55). 

The two-dimensional threefold-rotation point 
clearly has no degrees of freedom of orientation. Its 
appropriate crystallographic axes are z and y at 120 ° 

i to one another and a third axis [11] ma_king 120 ° with 
both. The 3 operation repeats z--> y ~ [11] -> z, and it 
also repeats any arbitrary vector to generate the ver- 
tices of an equilateral triangle. Although there is no 
difficulty in drawing a diagram showing all these 
features on a plane it is instructive to draw a 'hypo- 
stereogram'. This is a projection of points on the unit 
circle on to a diameter by joining them to the 'south 
pole of the circle', with the result shown in Fig. 11. 
If  the z axis is conventionally projected to the centre 
of the hypostereogram then the y axis and [11] 
necessarily appear in the positions shown because of 
the lack of any degree of freedom. 

The 4 operation represented by 

(! i) 00 
is in terms of axes from the centre to the vertices of 
a tetrahedron (not necessarl_'l_y_ regular), these direc- 
tions being the z, y, x and [111] axes. It sucdessively 
transforms z--> y --> x ~ [ 111] ~ z. In the ordinary 
stereogram (Fig. 12) we again use the convention that 
z is at the centre. If  the tetrahedron is regular the 
other axes appear on a circle round z at a radius of 
109 ° 28', and we can draw a subsidiary stereographic 
figure to represent the sequence of operations. We 
can also put in the position of the ~, axis which must 
be on the bisector of zx, i.e. on a circle of radius 
54 ° 44' around z. Thus the 4 operation is restricted to 
one degree of freedom (its position round this circle) 
if we maintain z in the centre and require the axes 
to remain those of a regular tetrahedron, whereas the 

axis is known to have two degrees of orientational 
freedom. The second one is regained if it is allowed 
to change its distance from z, and so to give rise to 
the axes of a tetrahedron that is not regular, but has 
two interaxial angles 0 and four interaxial angles tp 
with the restriction 

cos  +½ cos  o = -½.  

The result (with 0 = 8 0  ° ) is shown in Fig. 13. 
Obviously this 4 operation still generates a regular 
tetrahedron if a representative point is put at the 
appropriate angle of 54 ° 44' from the fourfold crypto- 
axis. The graphical symbol in terms of the crystal 
axes has changed but the operation is unchanged 
except in orientation. 
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Fig. 11. A hypostereogram of the crystallographic 120 ° axes 
appropriate to the two-dimensional 3 rotation operation. 

Fig. 12. A stereogram of the axes from the centre to the vertices 
of a regular tetrahedron. The position of the crypto-rotation axis 
of  one of the 4 operations is shown. The subsidiary stereographic 
diagram shows the effect of  successive operations of  this on the 
z point of the stereogram. 
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The situation is thus directly analogous to that 
regarding the degrees of freedom of the V operation 
in four dimensions. With the z point defined to be at 
the centre of the hyperstereogram the fourth degree 
of freedom is only obtained by distorting the axes 
from regularity and correspondingly distorting the 
graphical symbol, but again this does not prevent the 
operation from generating a regular pentatope from 
an appropriately oriented vector that makes 45 ° with 
both the crypto-rotation planes. The symmetry 
operation is the same but its component crypto-rota- 
tion planes are differently oriented with respect to 
the crystal. 

The situation in the fl, VIII and XII' operations 
does not seem to be susceptible of so direct a com- 
parison with symmetry in spaces of lower dimension- 
ality, but it is obviously open to the same explanation. 

8. Concluding remarks 

Since it is known that the V, V, VIII and XII' 
operations can all be formulated as double rotations 
of the appropriate orders, 5, 10, 8 and 12 respectively, 
it follows that any structure subject to one of these 
symmetry operations possesses exact rotational sym- 
metry of such an order on certain planes. However, 
this is shown to be compatible with the existence of 
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Fig. 13. A corresponding stereogram to Fig. 12 if the axes point 
to the vertices of an irregular tetrahedron having 4 symmetry 
along the bisector of the angle between the z and x axes. The 
crypto-rotation axis makes a different angle with z (here 40 ° 
instead of 54 ° 44'), and the subsidiary diagram is correspondingly 
distorted. 

a four-dimensional lattice because the planes in ques- 
tion are crystallographically irrational and so do not 
themselves exhibit any translational repetition. 

Formulation of these symmetry operations as 
double rotations, and representation of their crypto- 
rotation planes in hyperstereograms, greatly clarifies 
their geometrical nature and some features of their 
degrees of orientational freedom and enantiomor- 
phism. However, both because of the irrational 
orientations of the crypto-rotation planes and of the 
complicated character of the operations it is very 
difficult to deduce, from the representation of the 
crypto-rotation planes, the effects of the operation on 
the crystallographic axes. It is necessary to be able 
to deduce these effects in order to relate the hyper- 
stereographic representation of the point group to its 
generating matrices, and the previously introduced 
subsidiary graphical symbols therefore continue to 
be preferred for many purposes. Furthermore, the 
irrational orientations also mean that the double rota- 
tion notation (e.g. 55) is not readily compatible with 
the Hermann-Mauguin- type notation for the crystal 
classes proposed by Whittaker (1984b, 1985) in which 
symbol positions are associated with crystallographic 
planes and directions. 

We are grateful to Miss C. Grainger for drawing 
Figs. 11-13 and the non-standard symmetry-element 
symbols in Figs. 2 and 10; and also to the referees 
for their thorough reviews and the many valuable 
improvements that they suggested. 
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